Wavelet-based deconvolution of ultrasonic signals in nondestructive evaluation

نویسندگان

  • Roberto Henry Herrera
  • Rubén Orozco
  • Manuel Rodríguez
چکیده

In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution (ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the estimated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the reflectivity function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconvolution of ultrasonic nondestructive evaluation signals using higher-order statistics

In ultrasonic nondestructive evaluation (NDE) of materials, pulse echo measurements are masked by the characteristics of the measuring instruments, the propagation paths taken by the ultrasonic pulses, and are corrupted by additive noise. Deconvolution operation seeks to undo these masking effects and extract the defect impulse response which is essential for identification. In this contributio...

متن کامل

High-order spectra-based deconvolution of ultrasonic NDT signals for defect identification

In ultrasonic nondestructive testing (NDT) of materials, pulse-echo measurements are masked by the characteristics of the measuring instruments, the propagation paths taken by the ultrasonic pulses, and noise. This measured pulse-echo signal is modeled by the convolution of the defect impulse response and the measurement system response, added to noise. The deconvolution operation, therefore, s...

متن کامل

Cepstrum - based Deconvolution Techniques for Ultrasonic Pulse - echo Imaging of Flaws in Composite Laminates

Ultrasonic imaging is a powerful nondestructive evaluation (NDE) tool for flaw characterization. This thesis discusses the signal processing techniques developed for ultrasonic imaging of flaws in composite laminates. Commonly used time-domain signal processing techniques have problems including poor resolution, dependence on operator's experiences and subjectivity. Some transform-domain proces...

متن کامل

Sparsity enhancement for blind deconvolution of ultrasonic signals in nondestructive testing application.

The received signal in ultrasonic pulse-echo inspection can be modeled as a convolution between an impulse response and the reflection sequence, which is the impulse characteristic of the inspected object. Deconvolution aims at approximately inverting this process to improve the time resolution so that the overlap between echoes from closely spaced reflectors becomes small. This paper presents ...

متن کامل

Blind Deconvolution of Ultrasonic Signals Using High-Order Spectral Analysis and Wavelets

Defect detection by ultrasonic method is limited by the pulse width. Resolution can be improved through a deconvolution process with a priori information of the pulse or by its estimation. In this paper a regularization of the Wiener filter using wavelet shrinkage is presented for the estimation of the reflectivity function. The final result shows an improved signal to noise ratio with better a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1202.0609  شماره 

صفحات  -

تاریخ انتشار 2006